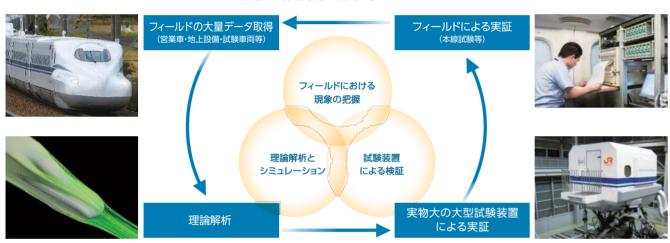
「社会的価値 | の創造 一社会-技術開発の推進 O

▶ JR東海の成長を支える技術開発


当社が将来にわたって使命を果たし、発展していくために は、日々の安全・安定輸送の確保に不断に取り組むこと、快 適な輸送サービスを追求していくことに加え、技術開発を通 じてこれらを支える基盤となるハードウェアや什組みを構築 していくことが不可欠です。当社では、より一体的かつ総合 的に技術的諸課題に取り組むため、2002年に開設した小牧 研究施設(愛知県小牧市)において、中長期的な視点から会

社施策に資する課題を設 定し、計画的に鉄道事業に おける安全・安定輸送の確 保等につながる技術開発 を進めています。

小牧研究施設外観

鉄道の研究開発の基本的なサイクル

▶技術開発の重点テーマ

「安全・安定輸送の追求」「業務改革の推進」「次代の鉄道シス テムの実現|「中央新幹線への技術展開」を柱として、センシン グや画像認識、ロボット等の技術を積極的に取り入れ、より安 全で、より便利で、より快適なサービスを効率的に提供するた めの技術開発を強力に推進しています。

また、当社が将来にわたって維持発展していくために、これま でより幅広い技術分野にも視野を広げ、鉄道システムのさらな る革新や当社の技術領域を広げる取組みも進めています。

主な技術開発成果

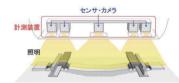
》将来を見据えた技術開発・技術力向上・人材育成

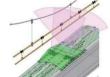
新幹線及び在来線における鉄道技術の深度化を図るとと もに、当社の将来を支える技術開発に取り組み、技術力の向 上と人材育成を図っています。小牧研究施設では、その大き な特色である実物大の試験装置を活用して、新たな車両の 開発、新幹線の脱線・逸脱防止対策、新幹線土木構造物の大 規模改修工法、新幹線用高速ヘビーシンプル架線等、様々 な技術開発成果を挙げてきました。また、近年の情報通信技 術(ICT)の急速な進歩及びデジタル変革の進展を踏まえた 多くの技術開発に取り組んでいます。

当社では、小牧研究施設の開設以来、日々の運行を管理 する鉄道事業本部と技術開発部が密接に連携し、鉄道事業 本部が直面する技術的諸課題への対応や定期的な技術交 流、さらに、鉄道事業本部と技術開発部で相互に計員を運用 することで、会社全体の技術力の底上げを図っています。今 後はさらに、他業種や他分野における技術動向を注視し、着 想力、応用力の幅を拡げ、外部の知見も積極的に取り入れる ことで、鉄道事業において直面する困難な技術課題に対し ても対処できるよう、組織としての能力も高めていきます。

・主な技術開発 ーメンテナンスの高度化・省力化・低コスト化ー

当社では、安全の確保を大前提とした上で、センシング、画像 認識、情報通信、大量データ解析、ロボット等の新しい技術を活 用したメンテナンス業務の機械化やシステム化等、業務の高度 化・省力化・低コスト化を図るための技術開発を進めています。


(技術開発事例1)新幹線の高速走行に対応した新たな営業車検測装置の開発


東海道新幹線は、計測専用の車両であるドクターイエローに よる軌道や電気設備の計測のほか、社員が日々の沿線徒歩巡 回等により検査を実施し、安全・安定輸送を確保しています。メ ンテナンスのさらなる高度化や今後の労働力不足を見据えた 省力化を図るべく、高速走行中の新幹線の営業車両に搭載し て軌道や電車線設備を計測できる装置を開発しました。

レールやまくらぎなどの軌道材料の状態把握については、 営業車両に搭載したセンサやカメラで高速走行中に取得し たデータを用いて点検できる「軌道材料モニタリングシステ ム | を開発しました。形状や材質が異なる様々な材料で構成 された軌道に対して、高さの変化を検知する点群データと軌 道材料の状態を詳細に把握できる画像データを取得してメ ンテナンスに必要な情報を走行中に自動で抽出することに より、よりタイムリーな軌道状態の把握が可能となります。

架線同士の位置関係や電車線金具などの架線細部につい ては、開発した「架線三次元検測装置」「電車線金具異常検 知装置 | にて検査できます。本装置により架線交差部等の複 雑な架線の位置関係を三次元的に測定して良否を自動判定 することができるほか、電車線金具画像を取得して金具の 変形や破損等の異常を自動で検出することができます。

これらの装置は2026年度から追加投入されるN700Sの 一部編成に搭載し、2027年より運用開始する予定であり、 係員が現地で実施している検査業務の一部の代替が可能 となり、軌道や電車線設備に関する保守作業が省力化でき ます。また、現在ドクターイエローで行っている検査につい ても、これらの装置とは別で新たに営業車検測機能を搭載 することで代替可能となります。これにより、営業車両でド クターイエローと同等以上のデータを高頻度で取得可能と なり、設備の安全性・信頼性が向上します。

軌道材料モニタリングシステム

電車線金具異常検知装置

(技術開発事例2)東海道新幹線 車両の外観検査システムの開発

東海道新幹線の車両の外観検査は、概ね2日以内の頻度で、 全長400mの車両の屋根トと床下を計員が徒歩で日視や計測 器具を用いて実施しているため、多くの労力を要しています。 将来の労働力人口減少を見据え、車両基地や駅に入るタイミン グで車両の外観を自動で検査するシステムを開発しました。

本システムは「外観検査装置」と「パンタグラフすり板検査 装置」で構成されており、「外観検査装置」は車両基地の検 査庫入口に車両全体を取り巻くように設置したカメラやセ ンサで車体や床下機器等の外観を自動撮影して異常の有 無を自動で検査するほか、「パンタグラフすり板検査装置」 は新幹線車両のパンタグラフすり板にレーザ光を照射して

センサで3次元計測し、すり板の状態や形状を自動で検査 することができます。

2024年度に「外観検査装 置」は大井車両基地へ設置、 「パンタグラフすり板検査装 置しは品川駅へ設置し、営業 車両での検証を進め、最適な 仕様を検討していきます。そ の後、設置工事の期間を経て 本格的な運用開始は2029年 度頃を目指しています。

外観検査装置